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Abstract: The twisted lateral tetraalkyl-
oxy ortho-terphenyl units in diben-
zo[18]crown-6 ethers 1a—f were readily
converted into the flat tetraalkyloxytri-
phenylene systems 2a—-f by oxidative
cyclization with FeCl; in nitromethane.
Reactions of the latter with potassium
salts gave complexes KX-2, which dis-
played mesomorphic properties. The
aromatization increased both the clear-
ing and melting points; the mesophase

Among the potassium complexes of tri-
phenylene-substituted crown ethers
KX-2, only those with the soft anions
I" and SCN™ displayed mesophases
with expanded phase temperature
ranges of 93°C and 132°C (for KX-2e),
respectively, as compared to the corre-
sponding o-terphenyl-substituted crown
ether complexes Klle (AT=51°C)
and KSCN-le (plastic crystal phase).
Anions such as Br~, ClI7, and F~ de-

creased the mesophase stability, and
PF¢™ led to complete loss of the meso-
morphic properties of KPF42 although
not for KPF¢1. For crown ether com-
plexes KX-2 (X=F, Cl, Br, I, BF,, and
SCN), columnar rectangular mesophas-
es of different symmetries (c2mm,
p2mg, and p2gg) were detected. In
contrast to findings for the twisted o-
terphenyl crown ether complexes
KX-1, the complexation of the flat tri-

stabilities, however, were mainly influ-
enced by the respective anions upon
complexation with various potassium
salts. In contrast, the alkyl chain
lengths played only a secondary role.

Introduction

Columnar liquid crystals have been extensively investigated
over the last decades because their structural and physical
properties, such as one-dimensional (1D) charge transport
and self-healing of defects, make them promising candidates
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phenylene crown ethers 2 with KX re-
sulted in the formation of organogels.
Characterization of the organogel of
KI-2e in CH,Cl, revealed a network of
fibers.

crown com-

for various applications, for example, organic light-emitting
diodes, organic field-effect transistors, organic photovoltaic
cells, gas sensors, high-resolution laser printers, and photo-
copying machines."! The attachment of crown ethers as sub-
stituents to mesogenic building blocks gives access to novel
hybrid materials. Based on the pioneering observations by
Percec and Ungar that complexation of crown ethers and
azacrowns with metal salts leads to a significant stabilization
of the mesophase,” many groups have entered the field and
have developed, for example, conducting wires,"! organic ge-
lators,”**4! helical fibers that assemble at gel/graphite inter-
faces,’) amphiphilic metallomesogens with high charge-carri-
er mobilities for high-performance organic field-effect tran-
sistors,®) and membranes containing ion-selective transport
channels.”" However, with regard to structure—property rela-
tionships and the comparison of structurally related meso-
gens, the influence of metal ion complexation on the meso-
morphic properties is less clear cut.* !

Recently, we reported on dibenzo[18]crown-6 derivatives
1 with two lateral ortho-terphenyl units and their complexes
MX-1 (M=K*, NH,*).'”l It turned out that the anion X has
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a much stronger effect on their properties than the alkyl
chain length. The anion not only caused a stabilization (soft
anions such as iodide and bridging anions such as hexafluo-
rophosphate) or destabilization (hard anions such as fluo-
ride, chloride, and tetrafluoroborate) of the mesophase as
compared to neat crown derivatives 1, but also influenced
the mesophase type. Whereas the soft thiocyanate anion in-
duced the formation of an ordered plastic crystal phase in
KSCN-1, anions such as Hal™, PF;~, and BF, led to the for-
mation of columnar mesophases.'? Previous work by
Miillen on graphene-type columnar liquid crystals revealed
that the temperature ranges of the columnar mesophases of
propeller-shaped hexaphenylbenzenes could be significantly
increased by converting them to the corresponding hexa-
peri-hexabenzocoronenes (HBC) with an extended flat aro-
matic system.™! This stabilizing effect of the HBC unit
was attributed to increased m-m interactions. In the light of
these observations, we were interested to ascertain whether
a related cycloaromatization of the ortho-terphenyl units in
1 to the corresponding triphenylene-substituted crown
ethers 2 (Scheme 1) would lead to improved mesophase
temperature ranges. Furthermore, we have focused on the
study of the mesophase properties of potassium complexes
KX-2 with particular emphasis on the influence of the coun-
terion. It was of interest to assess whether a certain anion
could overrule or enhance the influence of the extended ar-
omatic core. The results are reported below.

OR OR
RO OR
O O L)
sills e
S aadNans
RO K/O\) OR
OR 1a-f OR

FeCl,, MeNO,, CH,Cl, l 0°C, 15 min

(\o’w o
Kfc\) or

2a-f
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KX (1.5 equiv),
MeOH, CHZCEz

RT 18 h, quant.

1,2 a b c d e f
R C7H15 CBHW C9H19 CmHza CI1H23 CI2H25
2yield 99% 87% B88% 98% 99% 97%

X =F,CI, Br, I, SCN", BF, PFg

Scheme 1. Synthesis of triphenylene-substituted crown ethers 2 and their
complexes.

Chem. Eur. J. 2010, 16, 6326 -6337

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FULL PAPER

Results and Discussion

Synthesis and MALDI-TOF mass spectrometry of tripheny-
lene-substituted crown ethers 2: The known crown ethers
1a-f were prepared as described previously.'” Several meth-
ods for cyclization of the o-terphenyl-substituted derivatives
1 were investigated. First, a system of VOF; as oxidant and
BF;-OEt, as a Lewis acid was used, which has been success-
fully applied to the synthesis of triphenylene-substituted
[15]crown-5 ethers.® However, in the case of 1b,d, this pro-
cedure led to decomposition instead of cyclization, even
within a reaction time of just 5min. Replacement of
BF;-OEt, by B(OMe); gave the desired products 2b and 2d,
respectively, but due to incomplete reaction, mixtures of
educt and product (1b/2b and 1d/2d) were obtained, which
could not be separated by either recrystallization or column
chromatography. Ma and Peil"™ reported the oxidative cycli-
zation of o-terphenyl to triphenylene structures in almost
quantitative yields by using FeCl; in nitromethane as a mild
oxidant. By applying this method, the o-terphenyl substitu-
ents in 1a—f could be conveniently transformed into triphe-
nylene moieties (Scheme 1). For this cyclization reaction, an
excess (15equiv) of FeCl; in nitromethane was used. In
order to prevent acid-catalyzed ether cleavage, the HCl
evolved had to be removed by passing a vigorous stream of
dry nitrogen through the mixture during the reaction. In this
manner, crown ethers 2a—f were accessible in good to quan-
titative yields (88-99 %) in analytically pure form.!'*

Complexes KX-2a—f were prepared following a modifica-
tion of the procedure reported by Pedersen.'>7) A solu-
tion of the respective crown ether 2 (1 equiv) in CH,Cl, was
added to a solution of the appropriate potassium salt
(1.5 equiv) in MeOH, and the resulting slurry was vigorously
stirred overnight. After evaporation of the solvents, the resi-
due was taken up in boiling CH,Cl, and the solution was fil-
tered. Concentration of the filtrate and drying of the residue
under high vacuum afforded the respective target complex
in quantitative yield. For KX-2¢ (KX=KF, KCIl, KPFy),
KBr-2e, and KX:2f (KX=KCl, KBF,, KPF), a 1:1 ratio of
salt:crown could be verified by elemental analyses, while for
the other salts complexation was deduced from the
MALDI-TOF mass spectra,'**! as exemplified for neat
crown ether 2e and its KBr complex (Figure 1).

In the spectrum of neat 2e, the molecular ion [M]" signal
at m/z=2023.1 was detected as the most intense peak, to-
gether with two small peaks at m/z=2046.1 and 2062.2 due
to the [M+Na]* and [M+K]* adducts (Figure la). The
latter two peaks originated from traces of sodium salts in
the potassium-free matrix and a potassium impurity in the
sodium. Additionally, fragmentation of 2e was observed
under the conditions of the MALDI experiments. Up to
three side chains were cleaved, giving rise to fragment ions
[M—CH,;]*t, [M—2C,Hy]t, and [M—-3C,\H,;]t at m/z=
1867.8, 1712.5, and 1557.2, respectively. After complexation,
a completely different picture emerged. The most intense
peak in the spectrum of complexed 2e was that of the
[M+K]* adduct at m/z=2062.2 (Figure 1b). Sodium-potas-
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Figure 1. MALDI-TOF spectra of a)neat crown ether 2e; b) complex
KBr-2e.

sium exchange with the matrix and loss of potassium under
the experimental conditions were responsible for low-inten-
sity signals due to [M+Na]* at m/z=2046.1 and [M]* at
m/z=2023.1. Surprisingly, the complex KBr-2e showed little
tendency to undergo fragmentation and only one side chain
was cleaved under MALDI conditions, yielding a potassium-
complexed fragment ion [M+K—C;Hy]" at m/z=1908.9
and an uncomplexed fragment ion [M—CyHylt at m/z=
1869.8. All of the complexes KX-2 showed similar MALDI
spectra, with the most intense signal being that due to
[M+K]™". This result was taken as evidence for stabilization
of the system resulting from potassium cation uptake by the
crown ether unit.

NMR spectroscopic analysis and gelling properties: In order
to confirm the 1:1 crown:salt ratio and to gain insight into
the structure of the complexes in solution, '"H and *C NMR
spectra were examined in detail.

Unlike the neat crown ether derivatives 2, all of the com-
plexes KX-2 formed gels within a few minutes after dissolu-
tion in any of a multitude of organic solvents, including
CHCl;, CH,Cl,, MeOH, DMSO, MeCN, CsH,, and C,H,Cl,
(Figure 2a). Transmission electron microscopy (TEM)
showed that the organic gelling agent KI-2e self-assembles
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Figure 2. a) The left vial contains pure CH,Cl,, the right one the gel of
KI-2e (ca. 11.4 mmolL™"; 25.0 gL ") in CH,Cl,; b) and ¢) TEM images of
the organic gelling agent KI-2e (0.01 mmolL™") at different magnifica-
tions. Fibers of different thicknesses form an entangled network.

into fibers and ultimately forms an entangled network,
which probably causes gelation of the liquid (Figure 2b,c).
The network structure formed by the low molecular weight
organogelator is held together solely by noncovalent forces,
including hydrogen bonding, & stacking, and solvophobic ef-
fects. In recent years, there has been rapidly growing inter-
est in low molecular weight gelling agents due to the poten-
tial applications of gels and their remarkable properties with
respect to self-assembly phenomena.”!!
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Influence of Counterions on the Stability of Columnar Mesophases

The time prior to gelation was long enough to record
'H NMR spectra at room temperature, but was too short to
acquire "C NMR spectra with good signal-to-noise ratios.
Therefore, *C NMR spectra were recorded only for the
series KX-2e at 355K in CD,Cl, For KPF,2, 'HNMR
spectra were also recorded at 355 K in C,D,Cl, because ag-
gregation led to very broad signals at room temperature.

Comparing the 'HNMR spectra of 2e and KX-2e
(Figure 3), striking differences could be noted with respect

| N
__):/L_J \f&e'ze

A

/i Jy I\ _KeF2e
N\ E /N N i KSCN:-2e

445 440 435 430 425 4.20 4.15 ppm

Figure 3. '"H NMR spectra (500 MHz, C,D,Cl,) of crown ether 2e and its
complexes KX-2e. For comparison, all spectra were measured at 355 K.

to the anions. In the "H NMR spectrum of neat 2e, the H-a
signal (for numbering, see Scheme 1) appears as a multiplet
centered at 0 =4.43 ppm. The H-b signal is overlapped by
that of the OCH, groups of the alkyl side chains and ap-
pears as a multiplet at 6=4.16-4.21 ppm. After complexa-
tion, the H-a and H-b signals were variously shifted depend-
ing on the nature of the counterion. Slight downfield shifts
together with line broadening were observed for KF-2e and
KCl-2e with hard anions. The signals of H-a and H-b in
complex KBr-2e were shifted downfield to d=4.44 and
4.26 ppm, respectively. These effects were more pronounced
for KI-2e and KSCN-2e with soft iodide and bridging thio-
cyanate, for which downfield shifts of Ad=0.02-0.03 ppm
(for H-a) and A6=0.07-0.16 ppm (for H-b) were observed.
The complexation also affected the OCH, resonances, yield-
ing pseudotriplets (2e complexed with KBr, KI, or KSCN).

From this downfield shift tendency, a 1:1 complexation of
triphenylene-substituted crown ethers 2 was assumed, in
analogy to observations on crown ether derivatives 1'% and
literature findings concerning related [18]crown-6 com-
plexes."?!1 However, complexes KBF,2e and KPFg2e
gave puzzling results. The H-b signals were slightly shifted
downfield within the multiplets at d =4.16-4.21 ppm, where-
as for the H-a signals an upfield shift to 6 =4.41 ppm was
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found for KPF¢-2e. Lockhart et al. proposed that an upfield
shift of all crown ether signals can be taken as evidence for
the presence of 2:1 complexes.” However, in the cases of
KBF,2e and KPF2e just the signals of the crown ether H-
a protons were shifted upfield, while the H-b signals of the
crown ether fragment showed downfield shifts. Presumably,
this behavior may be caused by higher aggregates, for exam-
ple, two connected tight ion pairs, rather than 2:1 complexa-
tion. The differential scanning calorimetry (DSC) data dis-
cussed below support this assumption.

Based on literature results™ upfield shifts of the signals
of the relevant C atoms C-1, C-3, and C-a,b (for numbering,
see Scheme 1) in the *C NMR spectra of complexes KX-2
can be attributed to the presence of ion pairs. In the absence
of ion pairing (hard anions F~, CI7, or BF,") only minor
shifts were detected, whereas with soft anions (such as I7),
which are in close contact with the cation, and with strongly
pairing anions (SCN™, PF") large shifts up to Ad~2.4 ppm
were seen (see Figure S2 in the Supporting Information).

Mesomorphic properties of crown ethers 2 and their com-
plexes: The mesomorphic properties of crown ethers 2a—f
and complexes KX-2a—f were studied by differential scan-
ning calorimetry (DSC) (the detailed results are summarized
in Tables S1-S8 in the Supporting Information), polarizing
optical microscopy (POM), and wide-angle and small-angle
X-ray scattering (WAXS, SAXS).

In the case of the neat crown ether derivatives 2a-f,
liquid-crystalline properties were only observed for 2c-f
with side-chain lengths Cy to C,, (Figure 4a), and for these
the mesophase temperature ranges were narrow (2-14°C).

a)

c7 Ccs8 C9 C10 c1n Cc12
chain length n

TEXO
1. cooling  ©n Cr, Crs Craf|Col |

b)

2. heating

Cry Crp Crz |/Col |

20 45 70 95 120 145
Ti°C
Figure 4. a) Mesophase stabilities of neat crown ether derivatives 2a-f
(Key: grey=Cr; black=Col) and texture micrograph of 2e between
crossed polarizers at 142°C upon cooling from the isotropic phase (cool-
ing rate 10°Cmin !, magnification x200); b) DSC curve of 2e (heating/
cooling rate 5°Cmin'). Cr=crystal, Col =columnar, I=isotropic liquid.
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Crown ether 2¢ showed an iso- a) 250
tropic-to-mesophase transition -
at 136°C and crystallization at

135°C upon first cooling. T 150

Upon second heating, isotropic TI°c
melting at 139°C was ob-

served,
monotropic

demonstrating  the

behavior. Neat

c7 c8 ' c9
displayed enantiotropic meso-
phases, as exemplified for 2e.
Its DSC curve revealed an iso- 200
tropic-to-mesophase transition
at 129°C, a crystallization at
123°C, and three -crystal-to-
crystal transitions at 115, 103,

TI°C
100
and 58°C upon first cooling 50
(Figure 4b). Two crystal-to-
0

crystal transitions at 70 and c7 cs co
111°C, a melting transition at
125°C, and a clearing point at
129°C  were found wupon 200
second heating. Under the mi-
croscope, compound 2e was

T 150
TI°C
seen to form spherulithic tex- 100
tures typical of columnar mes-
ophases (Figure 4a, inset). The 50
phase type was assigned by X- B

ray diffraction analysis (see & - & T e

below).

The liquid-crystalline prop-
erties of the corresponding po-
tassium  halide  complexes
KHal-2 upon first cooling and

d) 250

the typical textures observed

c7 | cs | C9
morphic and only crystal-to-

crystal transitions were ob-
served. For complexes KF-2d-
f, enantiotropic mesophases
were detected between 126
and 133°C with small meso-
phase temperature ranges of
2-11°C. The KF complexes of 2d-f were seen to display
spherulithic or broken fan-shaped textures under the micro-
scope upon cooling, which are typical of columnar struc-
tures. The characteristic texture is exemplified by that of
KF-2e (Figure 5e).

A minimum chain length of C, was necessary in the series
of complexes KCI-2 for the formation of mesophases be-
tween 124 and 133°C. The observed phases were monotrop-
ic in the case of KCl-2¢ and enantiotropic for KCl-2d-f, ex-
tending over a temperature range of 1-8°C. Thus, complexa-
tion with KCl leads to an even stronger destabilization of
the mesophases than that seen with KF. Spherulithic tex-
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are illustrated in Figure 5a-h. 501
The KF complexes of 2a-¢
were found to be non-meso- ¢
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chain length n
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C10 cn

C10 c11 c12

Cc10 cn

Figure 5. Mesophase stabilities upon first cooling (left, a—d) of halide complexes and typical textures (right, e—
h) as seen between crossed polarizers upon cooling from the isotropic liquid (magnification x200). a) KF-2;
b) KCI2; ¢) KBr-2; d) KI-2 (Key: grey=Cr; black=Col; white=plastic); e) KF-2e at 129°C (cooling rate
10°Cmin'); f) KCl-2e at 132°C (cooling rate 10°Cmin'); g) KBr-2f at 118°C (cooling rate 5°Cmin');
h) KI-2e at 180°C (cooling rate 10°Cmin ).

tures were observed by polarizing optical microscopy, indi-
cating the presence of a columnar mesophase, as illustrated
for complex KCl-2e (Figure 5f). The complexes with KBr
gave some puzzling results. The complexes KBr-2d-f formed
mesophases with very small temperature ranges (3-6°C),
while KBr-2a—¢ with C; to C, side-chain lengths were non-
mesomorphic. For KBr-2d the mesophase was enantiotropic,
whereas KBr-2ef displayed only monotropic phases upon
cooling, as illustrated by DSC of KBr-2e (Figure 6).

The DSC curve revealed crystal-to-crystal transitions at
about 70 and 111°C and isotropic melting at 121°C upon
second heating. Upon first cooling, however, an isotropic-to-
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TEXO

1. cooling

2. heating

Cr

r T T T T T T

20 40 60 80 100 120 140
T/°C

Figure 6. DSC curves of complex KBr-2e.

mesophase transition at 123°C and crystallization at 120°C
were detected. Under the microscope, KBr-2 f displayed a
spherulithic texture typical of all complexes of the type
KBr-2 (Figure 5g).

In contrast, complexation of 2a—f with KI led to a signifi-
cant stabilization of the columnar mesophases. The whole
series KI-2 displayed enantiotropic (meso)phases. In the
case of KI-2ab plastic crystalline phases were found, where-
as complexes KI-2c—f displayed columnar phases between
111 and 201°C with large mesophase temperature ranges of
79-83°C (Figure 5d). Melting and clearing points decreased
with increasing side-chain length. Upon cooling from the
isotropic liquid, spherulithic textures were observed, as, for
example, for KI-2e, which confirmed the presence of a col-
umnar phase (Figure 5h).

The liquid-crystalline properties of complexes KBF,-2 and
KSCN-2 upon the first cooling cycle are depicted in Fig-
ure 7a,c. Complexes KBF,2 displayed enantiotropic meso-
phases for all side-chain lengths (Figure 7a). The DSC curve

a) 300

250

200

T 150
T/°C

100

50

Cc7 (o}:] Ce Cc10 cn
chain length n

c7 Cc8 co c10 C11 c12
chain length n

Figure 7. Mesophase stabilities upon first cooling of complexes a) KBF,2; ¢) KSCN-2 (Key: grey=Cr; black=
Col; white =plastic). Textures as seen between crossed polarizers upon cooling from the isotropic liquid (mag-
nification x200) of b) KBF,2e at 120°C (cooling rate 10°Cmin'); d) KSCN-2e at 243°C (cooling rate

5°Cmin").
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of KBF,2e (Figure 8) resembled that of neat 2e. The com-
plexation of 2e with potassium tetrafluoroborate induced
only minor changes in the phase behavior, with the excep-
tion of the clearing points, which were shifted to higher tem-

TGXO

Cr Col |

1. cooling

2. heating
Col *

20 40 60 80 100 120 140 160 180
T/°C

Figure 8. DSC curves of KBF,2e. * Clearing point observed in DSC; x
clearing point observed using polarizing optical microscopy.

peratures. Whereas a transition of the mesophase to the iso-
tropic liquid was observed in the second DSC heating cycle
(see Figure 8), upon cooling the clearing point was invisible
and could only be detected by POM.

Strong supercooling caused a decrease of the mesophase
temperature ranges to 11-40°C as compared with those in
the heating cycles (35-52°C). The strong stabilization might
be attributed to the weak pairing properties of the BF,”
anion. Similar observations were made by Coco etal. for
KClO, crown ether complexes.® The typical texture of
KBF,2e, with broken focal-conic fans characteristic of col-
umnar mesophases, is shown in Figure 7b.

KSCN complexes of 2 were found to be thermally stable
and displayed enantiotropic
(meso)phases for all side-chain
lengths. ~ While =~ KSCN-2a
formed an ordered plastic
phase (Figure 7c), the remain-
ing complexes displayed col-
umnar rectangular phases be-
tween 81 and 253 °C, extending
over a broad temperature
range of 133-172°C. The col-
umnar order of the mesophas-
es was confirmed by the obser-
vation of extended spherulithic
domains under the microscope
upon cooling from the isotrop-
ic liquid (Figure 7d).

In contrast, all complexes
KPF¢2  displayed isotropic
melting with high melting
points (233-266°C) accompa-
nied by decomposition. Pre-
sumably, the anion PF,~ intro-
duced such a high degree of
order that mesomorphic prop-
erties were completely lost.
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X-ray diffraction: In order to gain more insight into the
nature of the mesophases of 2 and KX-2, temperature-de-

Table 1. Summary of X-ray diffraction data collected for 2 and KX-2.

Compound Mesophase Lattice d spacing/  Miller o zZW

pendent powder X-ray diffractograms were recorded spacing/ A obsd indices
(Table 1). A (caled)
At room temperature, the samples showed intense sharp 2e Col, at a=606.1 33.1(33.1) (20) 1.0 23
. e . . 125°C b=25.1 235(23.5) (11)
reflections at all angular positions, as befits crystalline D 165 (165) (31).(40)
phases. In the case of mesogenic derivatives, sharp reflec- 125 (12:5) (02)’
tions were only observed at small angles, whereas in the 117 11.7)  (22),(51)
wide-angle region a broad scattering halo was detected, thus 11.0 (11.0)  (60)
demonstrating the liquid-crystalline nature. The high 4.6 (halo) -
ber of reflections observed at small angles is indicative 2t Col, at a=68.0 340 (340)  (20) 1021
hum g _ 120°C b=263 246 (246) (11)
of columnar rectangular phases. Col, phases of three differ- omm 171 (172)  (31),(40)
ent plane groups were found for crown ethers 2. 13.1 (13.2) (02)
Derivatives 2e, 2f KF.2d, KF-2e, KCl-2d, KCl-2e, 121 (12.2)  (22),(51)
KBr-2d, and KBr-2e showed up to six characteristic reflec- ‘1‘13'30(15('3) (60)
tions in the small-angle region, which were indexed as (29), KF-2d Col. at a=670 335(335) (20) 10 23
(11), (31), (02), (22), and (60), respectively (Table 1, Fig- 125°C b=251 235(235) (11)
ure 9a). However, (31) could also be (40) and (22) could c2mm 16.7 (16.7)  (31),(40)
also be (51), because both reflections have the same angular 4.4 (halo) -
ositions. The broad halo in the wide-angle regime origi- KF-2e Col, at a=608 304 (30.4)  (20) 1021
p : gle reg & 122°C b=240 223(223) (11)
2mm 153 (15.5)  (31),(40)
12.0 (12.0)  (02)
a) 350, (11
. 109 (11.2)  (22),(51)
3001 - 102 (10.1)  (60)
: (20) 9|
5 2501 & 4.9 (halo) -
L $ fl OO 0 KCl2d  Col, at a=638 319 (31.9) (20) 10 24
z 4}1’ of 125°C b=250 232(232) (11)
& 150 o I8 OLO CLO 2mm 163 (162)  (31),(40)
= 1001 g - g% @GN (02) (22) (50) 5.0 (halo) -
i KCl-2e Col, at a=67.5 33.8(33.8) (20) 1.0 23
) 126°C b=263 245 (245) (11)
2mm 16.8 (16.9) (40),(31)
133 (132) (02)
12.0 (12.0)  (22),(51)
b) 112 (11.3)  (60)
4.6 (halo) -
5 KBr2d  Col, at a=685 343 (343) (20) 1.0 26
© 125°C b=251 23.6(236) (1)
=
£ 2mm 171 (16.9)  (31),(40)
5 5.1 (halo) -
= KBr2e  Col, at a=66.7 334 (334) (20) 1.0 22
e 120°C b=253 23.7(23.7) (11)
2mm 16.7 (16.7)  (31),(40)
1 y 127 (12.7)  (02)
2 3 4 5 6 7 8 9 11.8 (11.9)  (22),(51)
201° 4.6 (halo) -
g B KI-2a Pat 170°C - - - - -
707 KI-2b P at 200°C - - - - -
801 KI2¢ Col, at a=61.6 36.0 (36.0) (01) 12 35
3 50 170°C b=36.0 3L1(3L1) (11)
= p2mg 233 (234) (21)
g 0 17.8 (17.8)  (31)
2 309 174 173) (12)
= 201 (20)(02)(12) (22) (31 15.4 (15.4) (40)
32)(23
164 SR l)(l ) 141 (14.1) (41
14) _
0 s [ 4.3 (halo)
i 5 g 3 2 g Kl2e Col,at  a=687 37.9(37.9) (01) 12 42
g7 150°C b=379 332(332) (11)
p2mg 254 (25.5) (21)
Figure 9. Small-angle scattering (SAXS) profiles of the liquid-crystalline 19.5 (19.6) (31)
phases of a) neat crown ether 2e at 125°C; b) complex KI-2e at 150°C; 183 (183) (12)
and c) complex KSCN-2e at 140°C (only the most intense reflections are 152 (15.6) (41)
shown). Insets: X-ray diffraction patterns (wide-angle scattering, WAXS) 125 (12.4) (13)
and schematic illustrations of the structural model for the unit cells: 4.8 (halo) -
a) c2mm for 2e; b) p2mg for KI-2e; c) p2 gg for KSCN-2e.
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Table 1. (Continued)

Compound Mesophase Lattice d spacing/  Miller p ZW
spacing/ A obsd indices
A (caled)

KBF,2b  Col at a=581 341 (341) (01) 12 3.6
170°C b=341 29.4(294) (11)
p2mg 222(221) (21)
16.9 (16.8) (31)
16.3 (16.3) (12)
4.5 (halo) -
Col, at a=62.7 36.8(36.8) (01) 12 3.6
170°C b=36.8 31.7(31.7) (11)
p2mg 24.1(23.9) (21)
18.3 (182) (31)
179 17.7) (12)
159 (15.9) (22)
14.5 (144) (41
12.3 (12.3) (03)
12.0 (12.0) (13)
4.5 (halo) -
Col, at a=66.1 38.7(38.7) (01) 12 3.9
150°C b=38.7 33.4(334) (11)
p2mg 25.0 (25.1) (21)
18.9 (19.1) (31)
18.5 (18.6) (12)
16.6 (16.7) (22)
152 (15.2) (41)
125 (127)  (13)
4.5 (halo) -
P at 220°C - - - -
Col, at a=58.6 348 (348) (01) 12 35
180°C b=34.8 29.9(29.9) (11)
p2mg 22,6 (22.4) (21)
17.1 (17.0) (31)
16.8 (17.7) (12)
15.0 (15.0) (22)
13.7 (13.5) (41)
113 (112) (42)
42 (halo) -
Col, at a=48.6 33.7(33.7) (11) 1.2 39
170°C b=46.8 23.4(234) (02)
p28g 21.0 (20.9) (12)
16.9 (16.9) (22)
133 (13.1) (23)
4.5 (halo) -
Col, at a=535 356 (356) (11) 12 38
140°C b=47.7 268 (26.8) (20)
p2gg 23.6 (23.8) (02)
219 (21.8) (12)
17.8 (17.8) (22)
16.7 (16.7)  (31)
153 (152) (13)
14.3 (143) (32)
13.7 (13.7)  (23)
12.9 (12.9) (41)
11.7 (11.6) (14)
10.2 (10.2) (43)
4.4 (halo) -

[a] Calculated by using Equation (1).

KBF,2d

KBF,2e

KSCN-2a
KSCN-2b

KSCN-2¢

KSCN-2e

nates from overlapping reflections of the alkyl chains in
their liquid-like order and the disordered stacking of the ar-
omatic units within the same column.””*! For the observed
Col, phases, two planar symmetry groups are possible,
namely c2mm and p2gg.” All reflections fulfil the condi-
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tion for a centered lattice ¢, h+k=2n, and hence c2mm
symmetry can be assigned to the mesophase.” Indeed,
p2gg symmetry would also be possible as the reflections 40
and Ok satisfy the condition #=2n and k=2n,**! but as all
reflections fulfil A+k=2n, a centered lattice is more likely
and is in good agreement with literature data on similar
phases.®!! Nevertheless, the assignment should be treated
with care because no aligned samples could be obtained. A
schematic representation of the Col, ¢2mm phase of neat 2e
is depicted in Figure 9a."” Assuming a density of p=
1.0 gecm ™, two molecules should be accommodated in the
unit cell according to Equation (1).”*

P-No-A-h
Z="r— (1)
where Z denotes the number of molecules in the unit cell,
p=density of the liquid-crystalline phase, N, = Avogadro’s
constant, A =columnar cross-section, #=height of a single
columnar unit, and M =molecular mass of the liquid crystal.
h is obtained from the diffuse scattering in the wide-angle
region, which originates from core—core interactions.

The X-ray patterns of complexes KI-2¢, KI-2e, KBF,2b,
KBF,2d, KBF,2e, and KSCN-2b display a set of reflections
at small angles (Table 1, Figure 9b). The presence of (01),
(21), and (41) reflections with A+k=2n+1 is indicative of a
primitive lattice p, because these reflections are forbidden in
the c2mm space group. The (01) reflection violates the con-
dition Ok: k=2n, thus excluding p2gg symmetry; however,
the observed reflections are consistent with a p2mg plane
group (hk: no conditions; #0: h=2n).’¥ Thus, a Col, p2mg
phase is most likely, in which four molecules are accommo-
dated according to the conditions limiting possible reflec-
tions.” However, calculation of Z according to Equa-
tion (1) yielded Z~3. The density, p, is likely to be higher
than 1.0 gcm™. Shibli and co-workers reported a density
range of 1.06 < p < 1.08 gcm™ for hexaalkyloxytripheny-
lenes in their mesophase. In the systems KX-2 with X=1,
BF,, and SCN, the density could even exceed 1.1 gcm™ as
one equivalent of a potassium salt with a pairing anion (as
deduced from NMR spectroscopic results) is dissolved in 2.
Applying p=1.1-12gem™* in Equation (1) resulted in Z
~4. A schematic representation of the p2mg mesophase ge-
ometry is exemplified for KI-2e in Figure 9b.

The X-ray diffraction patterns of KSCN-2¢ and KSCN-2e
are almost identical, but for KSCN-2e more reflections are
observed, which may be indexed as (11), (20), (02), (12),
(22), (31), (13), (32), (23), (41), (14), and (43) (Table 1, Fig-
ure 9¢). Reflections with A+k=2n+1 exclude ¢2 mm symme-
try for the mesophases of KSCN-2¢ and KSCN-2e. The (20)
reflection indicates a glide line normal to the crystallograph-
ic y-axis and the (02) reflection indicates the same symmetry
element normal to the x-axis. These symmetry elements are
only present in the p2gg plane group, and therefore p2gg
symmetry may be assigned to the Col, phases of KSCN-2¢
and KSCN-2e. With a density of 1.1-1.2 gcm™, four mole-
cules are accommodated in the cell, which is illustrated
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schematically for KSCN-2e in Figure 9c. It was surprising
that KSCN-2b formed a Col, p2mg phase while KSCN-2¢
and KSCN-2e displayed mesophases with p2gg symmetry.
Most probably, the complex with shorter side chains is more
comfortably accommodated in a p2mg cell.

Conclusion

A series of triphenylene-substituted crown ether derivatives
2a-f and their potassium complexes KX-2a—f have been
prepared and investigated, with particular focus on meso-
morphic properties and anion effects, both in solution and in
the mesophase. Figure 10 presents a comparison of the mes-

KPFg-2e
KPFg-1e
KBF,-2e
KBF,-1e

KSCN-2e

KSCN-1e

Kl-2e
Kl-1e
KBr-2e
KBr-1e
KCl-2e

KCI-1e_

KF-2e

KF-1e _

neat 2e

neat 1e —

0 50 100 150 200 250

TG

Figure 10. Comparison of the mesophase stabilities of o-terphenyl-substi-
tuted crown ether 1e and triphenylene-substituted crown ether 2e (R=
C;Hy;) and their corresponding metal complexes KX-le and KX-2e.
Key: grey = Cr; black = Col.

ophase temperature ranges of neat and KX-complexed
ortho-terphenyl-substituted crown ether le and tripheny-
lene-substituted crown ether 2e bearing undecyl side chains.
The extension and flattening of the aromatic system in 2e
and its complexes resulted in increased melting and clearing
points. However, with regard to mesophase stabilities, the
flatter systems are not always superior to the o-terphenyl
systems. It is the anion that plays a decisive role in deter-
mining the mesophase stabilization. Complexation of crown
ether 2e with potassium salts of hard anions (F~, CI7) or the
semi-soft anion Br~ led to mesophases with decreased phase
ranges as compared to the corresponding complexes of le.
However, the soft anion I", which forms tight ion pairs, im-
proved the mesomorphic properties, yielding mesophases
with phase ranges of up to 93°C (KI-2e). This effect is even
more pronounced in the case of the soft anion SCN™ in
KSCN-2e (AT =132°C). In contrast, the corresponding com-
plex KSCN-1le formed ordered plastic crystalline phases.
The bridging anion BF,” induced mesophase stabilization in
favor of the triphenylene complex KBF,2e, whereas PF;~
led to complete loss of mesomorphism in KPF¢-2e. Thus, the
bridging abilities of BF,” and PF,~ and their tendencies to
induce higher aggregates subtly influence mesophase forma-
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tion. In the case of the triphenylene complexes, the different
counterions (except PFy”) induced columnar rectangular
mesophases, while the mesophase type of KX-1 could be
changed by appropriate choice of the salt.

The presence of tight ion pairs in the triphenylene com-
plexes KBr-2, KI-2, and KSCN-2 with soft anions was indi-
cated by 'H and ®CNMR spectroscopy, while complexes
KBF,2 and KPF¢2 with bridging anions were seen to form
higher aggregates in solution. These observations are in
good agreement with the behavior of the corresponding o-
terphenyl complexes KX-1. However, in comparison to the
o-terphenyl complexes KX-1, the flatter triphenylene com-
plexes KX-2 show an increased tendency for aggregation in
solution, which is most obvious in the spontaneous gel for-
mation of KX-2. The amphiphilic structures together with
the extended flat aromatic cores seem to strongly favor or-
ganogelation, which is in good agreement with observations
on phthalocyanine crown ethers.®” Furthermore, compari-
son of the results for KX-1 and KX-2 reveals that simply the
introduction of strategic C—C bonds in a molecule of molec-
ular weight ~2000 completely changes its supramolecular
behavior. This finding may possibly be further extended into
a novel design principle for organic gelators.

Experimental Section

General methods: Melting points were measured on a Mettler Toledo
DSC822 and are uncorrected. NMR spectra were recorded on Bruker
Avance 300 and Avance 500 spectrometers. Unless otherwise stated,
spectra were recorded at room temperature. The spectra were calibrated
to the respective residual solvent peaks (CD,Cl,: dy=5.34 ppm, Oc=
53.40 ppm; C,D,Cl,: 05=>5.93 ppm, 6-=73.99 ppm). FTIR spectra were
recorded on a Bruker Vektor22 spectrometer with an MKII Golden Gate
single-reflection Diamant ATR system. MALDI-TOF spectra were re-
corded on a Bruker Reflex IV spectrometer with a nitrogen laser (A=
337 nm); software: XACQ 4.0.4 and XMASS/XTOF 5.1.0. X-ray powder
experiments were performed on a Bruker Nanostar; software: SAXS
4.1.26. The samples were kept in Hilgenberg glass capillaries of 0.7 mm
outer diameter in a temperature-controlled hot stage (£1°C). A mono-
chromatic Cuyg,, beam (A=1.5405 A) was obtained using a ceramic tube
generator (1500 W) with cross-coupled Gobel mirrors as the monochro-
mator. The diffraction patterns were recorded on a real-time 2D detector
(HI-STAR, Bruker). The patterns were calibrated with the powder pat-
tern of silver behenate. Differential scanning calorimetry (DSC) was per-
formed on the aforementioned Mettler Toledo DSC822, and polarizing
optical microscopy (POM) was conducted with an Olympus BX50 polar-
izing microscope combined with a Linkam LTS350 hot stage and a
Linkam TP93 central processor.

Transmission electron microscopy (TEM): Negatively stained samples
were prepared at room temperature by spreading 5 uL of a dispersion in
CHCI; onto an Ni grid coated with a Formvar/carbon film. After 10s,
excess liquid was blotted off with filter paper and then 5 uL of 1% aque-
ous uranyl acetate solution was applied to the grid and drained off after
30 s. The dried specimens were examined with a Zeiss EM 900 transmis-
sion electron microscope.

Data for derivatives 2a—d.f and their complexes KX-2a-d.f are summar-
ized in the Supporting Information.

General procedure for the formation of bis[5,6,9,10-tetrakis-
(alkyloxy)triphenylene]dibenzo[18]crown-6 ethers: A solution of FeCls
(0.30 mmol) in nitromethane (1 mL) was added dropwise at 0°C to a so-
lution of the respective crown ether 1 (0.02 mmol) in absolute CH,Cl,
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(20 mL), while dry nitrogen was bubbled vigorously through the solution
via a cannula. After stirring the mixture for 10 min, the reaction was
quenched by the addition of dry methanol (20 mL). The organic layer
was washed with H,O (3x20mL) and the aqueous layer was extracted
with CH,Cl, (3x20mL). The combined organic layers were dried
(MgSO,) and concentrated to yield the pure (elemental analysis) prod-
uct.

Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6  ether
(2e): Yield: 99%; colorless solid; 'H NMR (G,D,Cl,, 355K, 500 MHz):
0=0.86-0.89 (m, 24H; CHj;), 1.28-1.45 (m, 112H; O(CH,);(CH,),CH;),
1.52-1.59 (m, 16H; OCH,CH,CH,(CH,),CH;), 1.86-1.92 (m, 16H;
OCH,CH,(CH,)sCH3), 4.17 (m, 8H; H-b), 418 (t, J=6.5Hz, 8H;
OCH,(CH,),CH3;), 4.19 (t, J=6.6 Hz, 8H; OCH,(CH,),CHj;), 4.43 (m,,
8H; H-a), 7.80, 7.83 ppm (2s, 12H; H,..); "CNMR (C,D,Cl,, 355K,
125 MHz): 6 =14.0 (CHs;), 22.6, 26.2, 29.3, 29.5, 29.6, 29.7, 29.7, 29.7, 31.9
(OCH,(CH,),CH;), 70.1, 704 (OCH,CH,O), 70.46, 70.51 (OCH,-
(CH,),CHj;), 108.4, 108.92, 108.94 (C-3, C-4, C-7, C-8, C-11, C-12), 123.9,
124.1, 1242 (C-3a, C-3b, C-7a, C-7b, C-1la, C-11b), 149.0, 149.75,
149.79 ppm (C-5, C-6, C-9, C-10); FT-IR (ATR): ¥v=2918, 2849 (vs), 1618
(m), 1517 (s), 1467 (w), 1436 (vs), 1388 (w), 1260 (vs), 1175 (vs), 1140
(m), 1069 (m), 1045 (m), 835 (m), 721 cm™" (w); MS (MALDI-TOF):
mlz: caled for [C3,H,,0,4%]: 2023.1; found: 2021.8 (100), 1867.2 [M*
—CyHy3], (47), 1712.5 [M*—2C,;H,5] (26); elemental analysis caled (%)
for C,3,H,;,044 (2023.1): C 78.37, H 10.56; found: C 78.25, H 10.52.

General procedure for the complexation: A solution of 2e (18.7 umol) in
CH,CI, (5.0 mL) was added to a solution of the respective potassium salt
(28.0 umol) in MeOH (5.0 mL) and the reaction mixture was stirred over-
night at room temperature. After evaporation of the solvent, the residue
was taken up in CH,Cl,, and the solution was filtered through paper. The
filtrate was concentrated in vacuo and the residue was dried under high
vacuum to yield the complexes KX-2e quantitatively.
Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6 potas-
sium fluoride complex [KF-2e]: Colorless solid; 'HNMR (C,D,Cl,,
355K, 500 MHz): 6 =0.86-0.89 (m, 24H; CHj;), 1.28-1.45 (m, 112H; O-
(CH,);(CH,),CH,), 1.52-1.59 (m, 16H; OCH,CH,CH,(CH,),CH;), 1.86-
1.92 (m, 16H; OCH,CH,(CH,);CH;), 4.16-4.21 (m, 24H; H-b and
OCH,(CH,),CH;), 4.43 (m., 8H; H-a), 7.80, 7.83 ppm (2s, 12H; H,on);
BCNMR (C,D,Cl,, 355K, 125 MHz): 6=14.0 (CH;), 22.6, 263, 29.3,
29.5, 29.63, 29.66, 29.72, 29.75, 31.9 (OCH,(CH,),CH;), 70.0, 70.4
(OCH,CH,0), 70.4, 70.5 (OCH,(CH,),CH,), 108.3, 108.9 (C-3, C-4, C-7,
C-8, C-11, C-12), 123.9, 124.1, 124.2 (C-3a, C-3b, C-7a, C-7b, C-11a, C-
11b), 148.9, 149.74, 149.79 ppm (C-5, C-6, C-9, C-10); FTIR (ATR): v=
2912, 2852 (vs), 1618 (m), 1518 (s), 1467 (w), 1438 (vs), 1388 (w), 1262
(vs), 1177 ecm™ (vs); MS (MALDI-TOF): m/z: caled for [C3,H,,0,,K*
(M*—F)]: 2062.2; found: 2060.0 (100), 2020.6 [M*—KF] (45), 1905.2
[M*—F —C;;Hy] (15), 1866.0 [M*—KF—C H,;] (17).
Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6 potas-
sium chloride complex [KCl-2e]: Colorless solid; 'HNMR (C,D,Cl,,
355K, 500 MHz): 6=0.86-0.89 (m, 24H; CH;), 1.28-1.44 (m, 112H; O-
(CH,);(CH,),CH3;), 1.52-1.59 (m, 16 H; OCH,CH,CH,(CH,),CH3;), 1.86—
1.92 (m, 16H; OCH,CH,(CH,);CH;), 4.16-4.21 (m, 24H; H-b and
OCH,(CH,),CH,), 4.43 (m., 8H; H-a), 7.80, 7.83 ppm (2s, 12H; H,,n);
BCNMR (G,D,Cl,, 355K, 125 MHz): 6=14.0 (CH,), 22.6, 26.3, 29.3,
29.5, 29.62, 29.66, 29.71, 29.74, 31.9 (OCH,(CH,),CH;), 70.1, 70.4
(OCH,CH,0), 70.4, 70.5 (OCH,(CH,),CHj;), 108.4, 108.9 (C-3, C-4, C-7,
C-8, C-11, C-12), 123.9, 124.1, 124.2 (C-3a, C-3b, C-7a, C-7b, C-11a, C-
11b), 149.0, 149.73, 149.78 ppm (C-5, C-6, C-9, C-10); FTIR (ATR): v=
2920 (vs), 2850 (vs), 1618 (w), 1518 (m), 1467 (w), 1438 (s), 1389 (w),
1261 (vs), 1177 (vs), 1137 (w), 1070 (w), 834 (m), 721 cm™" (w); MS
(MALDI-TOF): m/z: caled for [CiH,,0,K* (M*T—CI7)]: 2062.2;
found: 2060.5 (100), 20204 [M*—KCI] (91), 1905.8 [M*—Cl —CyH,;]
(7), 1866.1 [M*—KCl-C;Hy] (32).
Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6 potas-
sium bromide complex [KBr-2e]: Colorless solid; 'HNMR (C,D,Cl,,
355 K, 500 MHz): 6=0.86-0.89 (m, 24H; CH;), 1.28-1.46 (m, 112H; O-
(CH,);(CH,),CH,), 1.52-1.59 (m, 16H; OCH,CH,CH,(CH,),CH,), 1.86—
1.92 (m, 16H; OCH,CH,(CH,);CH,), 4.19 (t, J=6.5Hz, 8H; OCH,
(CH,),CHj;), 4.20 (t, J=6.3 Hz, 8H; OCH,(CH,),CH;), 426 (m., 8H; H-
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b), 4.44 (m,, 8H; H-a), 7.79, 7.80, 7.81 ppm (3s, 12H; H,,om); “C NMR
(C,D,Cl, 355K, 125 MHz): 6=14.0 (CH,), 22.6, 26.3, 29.3, 29.50, 29.52,
29.63, 29.66, 29.71, 29.76, 319 (OCH,(CH,),CH;), 69.4, 70.0
(OCH,CH,0), 70.4, 70.6 (OCH,(CH,),CHj;), 107.4, 108.9, 109.0 (C-3, C-
4, C-7, C-8, C-11, C-12), 123.8, 124.1, 124.2 (C-3a, C-3b, C-7a, C-7b, C-
11a, C-11b), 148.4, 149.7, 149.9 ppm (C-5, C-6, C-9, C-10); FTIR (ATR):
v=2922 (vs), 2851 (vs), 1618 (w), 1518 (m), 1467 (w), 1439 (s), 1389 (w),
1261 (vs), 1177 (vs), 1137 (w), 1070 (w), 836 cm™' (m); MS (MALDI-
TOF): m/z: caled for [C3,H,,01, Kt (M*T—Br)]: 2062.2; found: 2063.3
(100), 2024.2 [M*—KBr] (38), 1908.9 [M*—Br —C;;H,;] (3), 1869.8 [M*
—KBr—C,;Hy;] (9); elemental analysis caled (%) for Ci3;,H,;,0,,KBr: C
74.01, H 9.98; found: C 73.72, H 10.08.
Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6 potas-
sium iodide complex [KI-2e]: Bright-yellow solid; 'H NMR (C,D,Cl,,
355 K, 500 MHz): 6=0.86-0.89 (m, 24H; CHj;), 1.28-1.46 (m, 112H; O-
(CH,);(CH,),CHj,), 1.52-1.59 (m, 16H; OCH,CH,CH,(CH,),CH,), 1.86-
1.92 (m, 16H; OCH,CH,(CH,);CHj;), 4.20 (t, J=6.4Hz, 16H; OCH,-
(CH,),CHs;), 4.37 (m,, 8H; H-b), 4.45 (m,., 8H; H-a), 7.73, 7.77, 7.81 ppm
(3s, 12H; H,m); "CNMR (C,D,Cl,, 355K, 125 MHz): 6=14.0 (CH;),
22.6, 26.25, 26.27, 29.3, 29.50, 29.54, 29.62, 29.64, 29.67, 29.7, 29.78, 31.9
(OCH,(CH,),CH;), 68.0, 69.3 (OCH,CH,0), 704, 70.7 (OCH,-
(CH,),CHj;), 105.2, 108.8, 109.0 (C-3, C-4, C-7, C-8, C-11, C-12), 123.6,
1239, 1243 (C-3a, C-3b, C-7a, C-7b, C-1la, C-11b), 147.0, 149.8,
150.0 ppm (C-5, C-6, C-9, C-10); FTIR (ATR): v=2920 (s), 2850 (s),
1617 (w), 1517 (m), 1467 (w), 1438 (s), 1389 (w), 1259 (vs), 1177 (vs),
1136 (w), 1069 (w), 835cm™ (m); MS (MALDI-TOF): m/z: caled for
[C13,H,,04KT (M*—17)]: 2062.2; found: 2059.4 (100), 2020.0 [M*—KI]
(20), 1905.4 [M*—1"—CHy] (7), 1869.8 [M* —KI-C,;H,;] (3).
Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6 potas-
sium thiocyanate complex [KSCN-2e]: Colorless solid; '"H NMR
(C,D,Cl,, 355 K, 500 MHz): 6=0.86-0.89 (m, 24H; CH,;), 1.28-1.44 (m,
112H; O(CH,);(CH,),CH;), 1.52-1.59 (m, 16H; OCH,CH,CH,-
(CH,),CH;), 1.86-1.92 (m, 16H; OCH,CH,(CH,);CH;), 4.20 (t, J=
6.5 Hz, 16H; OCH,(CH,),CHj;), 4.28 (m,, 8H; H-b), 4.46 (m,, 8H; H-a),
7.72, 7.7, 781 ppm (3s, 12H; H,,m); "CNMR (C,D,Cl, 355K,
125 MHz): 6=14.0 (CHj), 22.6, 26.25, 26.26, 29.3, 29.50, 29.53, 29.58,
29.59, 29.61, 29.62, 29.69, 29.7, 29.8, 31.9 (OCH,(CH,),CH,), 67.5, 69.2
(OCH,CH,0), 70.4, 70.7 (OCH,(CH,),CHj;), 104.6, 108.8, 109.1 (C-3, C-
4, C-7, C-8, C-11, C-12), 123.6, 123.8, 124.3 (C-3a, C-3b, C-7a, C-7b, C-
11a, C-11b), 146.6, 149.8, 150.0 ppm (C-5, C-6, C-9, C-10); FTIR (ATR):
v=2918 (s), 2849 (s), 2057 (w), 1618 (w), 1517 (m), 1467 (w), 1437 (s),
1390 (w), 1257 (vs), 1176 (vs), 1135 (w), 1068 (m), 1081 (m), 835 cm™'
(m); MS (MALDI-TOF): m/z: caled for [Cy3,H,,0,KY (M*—SCN)]:
2062.2; found: 2062.4 (100), 2022.8 [M*—KSCN] (32), 1907.6 [M*
—SCN™—C,;H,3] (12), 1869.8 [M*—KSCN—C,;H,;] (11).
Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6 potas-
sium tetrafluoroborate complex [KBF,2e]: Colorless solid; 'H NMR
(C,D,Cl,, 355K, 500 MHz): 6=0.87-0.89 (m, 24H; CHj;), 1.29-1.45 (m,
112H; O(CH,);(CH,),CH;), 1.53-1.59 (m, 16H; OCH,CH,CH,
(CH,);,CH;), 1.86-1.92 (m, 16H; OCH,CH,(CH,);CH;), 4.16-4.21 (m,
24H; H-b and OCH,(CH,),CHj;), 4.43 (m., 8H; H-a), 7.80, 7.83 ppm (2s,
12H; H,om); *CNMR (C,D,Cl,, 355 K, 125 MHz): 6=14.0 (CH;), 22.6,
26.25, 29.28, 29.5, 29.62, 29.65, 29.72, 29.74, 31.9 (OCH,(CH,),CHs), 70.0,
70.3 (OCH,CH,0), 70.4, 70.5 (OCH,(CH,),CHj3), 108.3, 108.9 (C-3, C-4,
C-7, C-8, C-11, C-12), 123.9, 124.1, 124.2 (C-3a, C-3b, C-7a, C-7b, C-11a,
C-11b), 148.8, 149.73, 149.78 ppm (C-5, C-6, C-9, C-10); FTIR (ATR):
Vv=2918, 2849 (vs), 1617 (m), 1517 (s), 1466 (w), 1437 (vs), 1389 (w), 1262
(vs), 1257 (vs), 1176 (vs), 1136 (m), 1067 (m), 1021 (m), 945 (m), 835 (w),
722 cm™ (w); MS (MALDI-TOF): m/z: caled for [C3,H,,0,K* (M*
—BF,")]: 2062.2; found: 2060.7 (100), 2020.8 [M*—KBF,] (93), 1905.2
[M*—BF, —C;;H,;] (19), 1866.3 [M*—-KBF,—C,;H,] (36); elemental
analysis caled (%) for C3,H,,BF,KO,,: C 73.77, H 9.94; found: C 73.78,
H 10.04.
Bis[5,6,9,10-tetrakis(undecyloxy)triphenylene]dibenzo[18]crown-6 potas-
sium hexafluorophosphate complex [KPF,-2e]: Colorless solid; '"H NMR
(C,D,Cl,, 355 K, 500 MHz): 6=0.87-0.89 (m, 24H; CH,;), 1.28-1.46 (m,
112H; O(CH,);(CH,),CH;), 1.53-1.59 (m, 16H; OCH,CH,CH,-
(CH,),CH;), 1.87-1.92 (m, 16H; OCH,CH,(CH,);CH;), 4.17-4.21 (m,
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24H; Hb and OCH,(CH,),CH,), 441 (m, 8H; H-a), 7.69, 7.73,
779 ppm (3s, 12H; H,,,): “CNMR (C,D,Cl,, 355K, 125 MHz): 6=
14.02, 14.03 (CHs;), 22.6, 26.25, 26.27, 29.29, 29.52, 29.55, 29.64, 29.68,
29.70, 29.78, 31.9 (OCH,(CH,),CH,), 67.9, 69.0 (OCH,CH,0), 70.3, 70.6
(OCH,(CH,),CHs), 108.7, 108.9 (C-3, C-4, C-7, C-8, C-11, C-12), 123.5,
123.8, 1242 (C-3a, C-3b, C-7a, C-7b, C-11a, C-11b), 147.0, 149.7,
149.9 ppm (C-5, C-6, C-9, C-10); FTIR (ATR): ¥=2920, 2850 (vs), 1618
(m), 1518 (s), 1467 (w), 1437 (vs), 1389 (w), 1259 (vs), 1177 (vs), 1137
(m), 1069 (m), 1029 (m), 952 (m), 836 (vs), 722 cm~' (w); MS (MALDI-
TOF): m/z: caled for [Cy3,H,,0, KT (M*—PF;7)]: 2062.2; found: 2061.0
(100), 2021.6 [M*—KPF,| (62), 19052 [M*—PF, —C,H,s] (17), 1866.3
[M*—KPF,—C;H,] (27); elemental analysis caled (%) for
Cy3Hy,FKO,,P: C 71.83, H 9.68; found: C 71.72, H 9.73.
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